$\underline{1}$		www.ta	arainstitut	e.com	TARA/NDA	-NA/Mathematics/	′05
1. 2.	The centre of the conic re $2x^{2} - 72xy + 23y^{2} - 4x - 28$ (a) $\left(\frac{11}{15}, \frac{2}{25}\right)$ (c) $\left(\frac{11}{15}, -\frac{2}{25}\right)$ The centre of $14x^{2} - 4xy + \frac{1}{25}$	(b) $\left(\frac{2}{25}, \frac{11}{25}\right)$ (d) $\left(-\frac{11}{25}, -\frac{2}{25}\right)$		opposite in sign (a) $\frac{a-b}{a+b}$ (c) $\frac{a+b}{a-b}$, then the v	$\frac{a^{2}-bx}{x-c} = \frac{m-1}{m+1} \text{ are eq}$ ralue of <i>m</i> will be (b) $\frac{b-a}{a+b}$ (d) $\frac{b+a}{b-a}$ re equation $x^{2} + px$	
3.		(b) $(2, -3)$ (d) $(-2, -3)$ nic with focus at $(1, -1)$,		was taken as 1 to be –2 and – are	7 in place o 15, The roc	of 13, its roots were ots of the original eq	e found
4.	is (a) $x^2 - y^2 = 1$ (c) $2xy - 4x + 4y + 1 = 0$	$n\theta$, $\tan\theta - \sin\theta$), then locus		the other root, the other root, the other root, the other root, the formula $na^2 = bc(n + c)$ (c) $nc^2 = ab(n + c)$	ne equation hen 1) ² 1) ²	(b) $-3, -10$ (d) None of these $ax^{2} + bx + c = 0$ be (b) $nb^{2} = ac(n+1)^{2}$ (d) None of these	
5.	(c) $(x^2 - y^2)^2 = 16xy$ Equation $\sqrt{(x-2)^2 + y^2} + \sqrt{(x+2)^2 +}$ (a) Parabola (c) Circle	(d) $x^2 - y^2 = 6xy$	13.		$n^{\text{th}} \text{ power } a^{n}$ + $(a^n c)^{\frac{1}{n+1}} =$	c equation $ax^2 + bx$ of the other root, the (b) $-b$ (d) $-b^{\frac{1}{n+1}}$	
6.	Angle of intersection of $r = 2 \sin \theta$ is equal to (a) $\frac{\pi}{2}$ (c) $\frac{\pi}{4}$	the curves $r = \sin \theta + \cos \theta$ (b) $\frac{\pi}{3}$ (d) None of these	14. 15.	$ax^{2} + bx + c = 0$ (a) $a^{2} - b^{2} + 2a$, then c = 0 c = 0	roots of the e (b) $(a-c)^2 = b^2 + c^2$ (d) $a^2 + b^2 + 2ac = 0$ dratic equation	•
7. 8.	If $a < b < c < d$, then the ro (x - a)(x - c) + 2(x - b)(x - d) (a) Real and distinct (c) Imaginary If the roots of the equation			$x^{2} - 2kx +$ are less than 5, (a) (- ∞ , 4) (c) (5, 6] If <i>n</i> geometr	$k^2 + k - 5 =$ then <i>k</i> lies ic means	0	
9.	$x^{2} - 4qx + p^{2} = 0$ are (a) Real and unequal (c) Imaginary	(b) Real and equal (d) None of these h $(a^2 - 1)x^2 + 2(a - 1)x + 2$ is	17.	(c) G ₁ .G ₂	$G_n = G^n$	(b) $G_1.G_2G_n =$ (d) $G_1.G_2G_n =$ quation $x^2 - 3x + a =$	= G ^{2/n}
	positive for any x are (a) $a \ge 1$ (c) $a > -3$	(b) $a \le 1$ (d) $a < -3$ or $a > 1$			an increasin	equation $x^2 - 12x + b$ og G.P., then $(a, b) =$ (b) (12, 3) (d) (4, 16)	

 $\boxed{1}$

-

TARA/NDA-NA/Mathematics/05

2

\leq			
18.	2.357 =	26.	Tł
	(a) $\frac{2355}{1001}$ (b) $\frac{2370}{997}$		
	(c) $\frac{2355}{999}$ (d) None of these		(a
10	21		(c)
19.	If $\tan x = \frac{2b}{a-c} (a \neq c)$,	27.	СС
	$y = a\cos^{2} x + 2b\sin x \cos x + c\sin^{2} x$ and $z = a\sin^{2} x - 2b\sin x \cos x + c\cos^{2} x$, then		(0
	(a) $y = z$ (b) $y + z = a + c$		(a
	(c) $y-z = a+c$ (d) $y-z = (a-c)^2 + 4b^2$		(C
20.	If $\operatorname{cosec} \theta = \frac{p+q}{p-q}$, then $\operatorname{cot} \left(\frac{\pi}{4} + \frac{\theta}{2} \right) =$	28.	lf
	(a) $\sqrt{\frac{p}{q}}$ (b) $\sqrt{\frac{q}{p}}$		(a (c
	(c) \sqrt{pq} (d) pq	29.	T
21.	If $a \sin^2 x + b \cos^2 x = c$, $b \sin^2 y + a \cos^2 y = d$ and		to its
	$a \tan x = b \tan y$, then $\frac{a^2}{b^2}$ is equal to		ho
	(a) $\frac{(b-c)(d-b)}{(a-d)(c-a)}$ (b) $\frac{(a-d)(c-a)}{(b-c)(d-b)}$		to (a
			(c
	(c) $\frac{(d-a)(c-a)}{(b-c)(d-b)}$ (d) $\frac{(b-c)(b-d)}{(a-c)(a-d)}$	30.	A gr
22.	$\left(\frac{\cos A + \cos B}{\sin A - \sin B}\right)^n + \left(\frac{\sin A + \sin B}{\cos A - \cos B}\right)^n (n \text{ even or odd}) =$		be 10
	(a) $2 \tan^n \frac{A-B}{2}$ (b) $2 \cot^n \frac{A-B}{2}$		(a
	(c) 0 (d) None of these		(C
23.	If $\sin \alpha = 1/\sqrt{5}$ and $\sin \beta = 3/5$, then $\beta - \alpha$ lies in the	31.	Tł
	interval (a) $[0, \pi / 4]$ (b) $[\pi / 2, 3\pi / 4]$		ta
	(c) $[3\pi/4,\pi]$ (d) $[\pi,5\pi/4]$		(a
24.	If $2 \sec 2\alpha = \tan \beta + \cot \beta$, then one of the values of		(C
	$\alpha + \beta$ is	32.	Tł
	(a) $\frac{\pi}{4}$ (b) $\frac{\pi}{2}$		(a
	(c) π (d) 2π		
25.	If $\frac{x}{\cos\theta} = \frac{y}{\cos\left(\theta - \frac{2\pi}{3}\right)} = \frac{z}{\cos\left(\theta + \frac{2\pi}{3}\right)}$, then $x + y + z =$	33.	(c) If
	(a) 1 (b) 0		(a
	(c) -1 (d) None of these		
	a k sta station		(C

ainstitute	e.in TARA/	NDA-NA/Mathematics/05
26.	The principal value of sin ⁻	$\left(-\frac{\sqrt{3}}{2}\right)$ is
	(a) $\frac{-2\pi}{3}$	(b) $\frac{-\pi}{3}$
	(c) $\frac{4\pi}{3}$	(d) $\frac{5\pi}{3}$
27.	$\cot\left[\cos^{-1}\left(\frac{7}{25}\right)\right] =$	
	(a) $\frac{25}{24}$	(b) $\frac{25}{7}$
	(c) $\frac{24}{25}$	(d) None of these
28.	If $\frac{\pi}{2} \le x \le \frac{3\pi}{2}$, then $\sin^{-1}(\sin^{-1})$	x) is equal to
	(a) x (c) $\pi + x$	(b) $-x$ (d) $\pi - x$
29.	The angle of elevation of t	the top of a tower from the the angle of depression of
	its base is 30°. If the horiz	ontal distance between the
	tower is	2 m, then the height of the
	(a) $48\sqrt{3}$ m (c) $24\sqrt{3}$ m	(b) $16\sqrt{3}$ m (d) $16/\sqrt{3}$ m
30.	., .	is 1.5 <i>metres</i> above the
ground observes the angle of elevation of be 60°. If the distance of the man from t		
	10 meters, the height of th (a) $(1.5 + 10\sqrt{3})m$	e tower is (b) $10\sqrt{3} m$
		(d) None of these
31.	· · · /	he trigonometric equation
	$\tan\theta = \cot\alpha \text{is}$	π.
	Z	(b) $\theta = n\pi - \frac{\pi}{2} + \alpha$
	2	(d) $\theta = n\pi - \frac{\pi}{2} - \alpha$
32.	The solution of the equation	3
	(a) $\frac{1}{2}[n\pi + (-1)^n \sin^{-1}(3/4)]$	
	(c) $\frac{n\pi}{2} + (-1)^n \sin^{-1}(3/4)$	
33.	If $\cos p\theta = \cos q\theta$, $p \neq q$, the	
	(a) $\theta = 2n\pi$	(b) $\theta = \frac{2n\pi}{p \pm q}$
	(c) $\theta = \frac{n\pi}{p+q}$	(d) None of these

(3

- **34.** If $y = \tan^{-1} \frac{4x}{1+5x^2} + \tan^{-1} \frac{2+3x}{3-2x}$, then $\frac{dy}{dx} = \frac{1}{3} \frac{1}{3}$ (a) $\frac{1}{1+25x^2} + \frac{2}{1+x^2}$ (b) $\frac{5}{1+25x^2} + \frac{2}{1+x^2}$ (c) $\frac{5}{1+25x^2}$ (d) $\frac{1}{1+25x^2}$ **35.** $\frac{d}{dx}\log_7(\log_7 x) =$ (b) $\frac{\log_e 7}{x \log_e x}$ (a) $\frac{1}{x \log_e x}$ (c) $\frac{\log_7 e}{x \log_e x}$ (d) $\frac{\log_7 e}{x \log_7 x}$ **36.** If $f(x) = \sqrt{1 + \cos^2(x^2)}$, then $f\left(\frac{\sqrt{\pi}}{2}\right)$ is (a) $\sqrt{\pi}/6$ (b) $-\sqrt{(\pi / 6)}$ (c) $1/\sqrt{6}$ (d) $\pi / \sqrt{6}$
- **37.** ABCD is a rectangle such that AB = CD = a and BC = DA = b. Forces P, P act along AD and CB, and forces Q, Q act along AB and CD. The perpendicular distance between the resultant of forces P, Q at A and the resultant of forces P, Q at C is

(a)
$$\frac{Pa + Qb}{\sqrt{P^2 + Q^2}}$$
 (b)
$$\frac{Pa - Qb}{\sqrt{P^2 + Q^2}}$$

(c)
$$\frac{Pb + Qa}{\sqrt{P^2 + Q^2}}$$
 (d)
$$\frac{Pb - Qa}{\sqrt{P^2 + Q^2}}$$

- **38.** A horizontal rod of length 5*m* and weight 4 *N* is suspended at the ends by two strings. The weights of 8N, 12N, 16N and 20N are placed on the rod at distance 1m, 2m, 3m and 4 m from one end of the rod. The tension in the strings are
 - (a) 26N,34N (b) 20N,30N (d) None of these (c) 10N,40N
- Two equal heavy rods of weight W and length 2a are 39. freely hinged together and placed symmetrically over a smooth fixed sphere of radius r. The inclination θ of each rod to the horizontal is given by
 - (a) $r \tan \theta \sec^2 \theta = a$ (b) $r(\tan^3 \theta + \tan \theta) = a$

(c)
$$r\sin\theta = a\cos^3\theta$$
 (d) None of these

- 40. A uniform rod AB movable about a hinge at A rests with one end in contact with a smooth wall. If α be the inclination of the rod to the horizontal, then reaction at the hinge is
 - (a) $\frac{W}{2}\sqrt{3 + \csc^2\alpha}$ (b) $\frac{W}{2}\sqrt{3 + \sin^2\alpha}$ (c) $W\sqrt{3 + \csc^2\alpha}$ (d) None of these
 - (c) $W\sqrt{3 + \csc^2\alpha}$ (d) None of these

Forces of magnitudes 3, P, 5, 10 and Q Newton are 41. respectively acting along the sides AB, BC, CD, AD and the diagonal CA of a rectangle ABCD, where AB = 4 m and BC = 3m. If the resultant is a single force along the other diogonal BD then $P_{i}Q$ and the resultant are

(a)
$$4,10\frac{5}{12},12\frac{11}{12}$$
 (b) 5, 6, 7
(c) $3\frac{1}{2},8,9\frac{1}{2}$ (d) None of these

42. The foot of a uniform ladder is on a rough horizontal ground and the top rests against a smooth vertical wall. The weight of the ladder is 400 unit. A man weighing 800 unit stands on the ladder at one quarter of its length from the bottom. If the inclination of the ladder to the horizontal is 30°, the reaction at the wall is

- (c) 800√3
- (d) $400\sqrt{3}$
- A ladder, 10 metre long, rests with one end against a 43. smooth vertical wall and the other end on the ground which is rough; the coefficient of friction being $\frac{1}{2}$. The foot of the ladder being 2 metre from the wall. A

man whose weight is 4 times that of the ladder can ascend before it begins to slip a distance (in metre), is

(a)
$$\frac{3}{4}(10\sqrt{6}-1)$$
 (b) $\frac{5}{4}(10\sqrt{6}-1)$

- (c) $\frac{2}{3}(5\sqrt{2}-1)$ (d) None of these
- 44. The line *L* passes through the points of intersection of the circles $x^2 + y^2 = 25$ and $x^2 + y^2 - 8x + 7 = 0$. The length of perpendicular from centre of second circle onto the line L, is
 - (a) 4 (b) 3
 - (c) 1 (d) 0
- 45. If a circle passes through the point (a, b) and cuts the circle $x^2 + y^2 = 4$ orthogonally, then locus of its centre is
 - (a) $2ax 2by (a^2 + b^2 + 4) = 0$
 - (b) $2ax + 2by (a^2 + b^2 + 4) = 0$
 - (c) $2ax 2by + (a^2 + b^2 + 4) = 0$
 - (d) $2ax + 2by + (a^2 + b^2 + 4) = 0$

TARA

(a) $n_1 = n_2 + 1$ (b) $n_1 = n_2 - 1$ **46.** If $f:[0,\infty) \to [0,\infty)$ and $f(x) = \frac{x}{1+x}$, then *f* is (c) $n_1 = n_2$ (d) $n_1 > 0, n_2 > 0$ (a) One-one and onto (b) One-one but not onto **54.** Given that the equation $z^2 + (p + iq)z + r + is = 0$, (c) Onto but not one-one (d) Neither one-one nor where $p_{i}q_{i}r_{i}s$ are real and non-zero has a real root, onto then **47.** If $f: R \to S$ defined by $f(x) = \sin x - \sqrt{3} \cos x + 1$ is (a) $pqr = r^2 + p^2 s$ onto, then the interval of S is (b) $prs = q^2 + r^2 p$ (a) [-1, 3] (b) [1, 1] (c) $qrs = p^2 + s^2q$ (d) $pqs = s^2 + q^2r$ (c) [0, 1] (d) [0, -1] 55. If $x = -5 + 2\sqrt{-4}$, then the value of the expression **48.** $\lim_{x\to 0} \frac{\tan x - \sin x}{x^3} =$ $x^4 + 9x^3 + 35x^2 - x + 4$ is (a) 160 (b) -160 (b) $-\frac{1}{2}$ (a) $\frac{1}{2}$ (d) -60 (c) 60 56. If $\sqrt{3} + i = (a + ib)(c + id)$, then $\tan^{-1}\left(\frac{b}{a}\right) + \tan^{-1}\left(\frac{d}{c}\right)$ (c) $\frac{2}{3}$ (d) None of these **49.** $\lim_{x\to 0} \frac{1-\cos x}{x} =$ has the value (a) $\frac{\pi}{3} + 2n\pi, n \in I$ (b) $n\pi + \frac{\pi}{6}, n \in I$ (b) $\frac{1}{2}$ (a) 0 (c) $n\pi - \frac{\pi}{3}, n \in I$ (d) $2n\pi - \frac{\pi}{3}, n \in I$ (C) $\frac{1}{2}$ (d) None of these **57.** If the coefficient of $(2r+4)^{th}$ and $(r-2)^{th}$ terms in the If the function $f(x) = \begin{cases} 1 + \sin \frac{\pi x}{2}, \text{ for } -\infty < x \le 1\\ ax + b, \text{ for } 1 < x < 3\\ 6 \tan \frac{x\pi}{12}, \text{ for } 3 \le x < 6 \end{cases}$ expansion of $(1 + x)^{18}$ are equal, then r =50. (a) 12 (b) 10 (c) 8 (d) 6 The middle term in the expansion of $(1 + x)^{2n}$ is 58. continuous in the interval $(-\infty, 6)$, then the values of a (a) $\frac{1.3.5...(5n-1)}{n!}x^n$ (b) $\frac{2.4.6...2n}{n!}x^{2n+1}$ and b are respectively (a) 0, 2 (b) 1, 1 (c) $\frac{1.3.5...(2n-1)}{n!}x^n$ (d) $\frac{1.3.5...(2n-1)}{n!}2^nx^n$ (c) 2,0 (d) 2, 1 59. The number of words which can be made out of the $\int x + 2, -1 < x < 3$ letters of the word MOBILE when consonants always **51.** If $f(x) = \begin{cases} 5 & x = 3 \\ 8 - x, & x > 3 \end{cases}$, then at x = 3, f'(x) = 3occupy odd places is (a) 20 (b) 36 (a) 1 (b) - 1 (c) 30 (d) 720 (d) Does not exist How many numbers greater than 24000 can be (c) 0 **60**. **52.** If $f(x) = \begin{cases} x, & 0 \le x \le 1 \\ 2x - 1, & 1 < x \end{cases}$, then formed by using digits 1, 2, 3, 4, 5 when no digit is repeated (a) 36 (b) 60 (a) f is discontinuous at x = 1(c) 84 (d) 120 (b) f is differentiable at x = 1 $\begin{vmatrix} a^2 & b^2 & c^2 \\ (a+1)^2 & (b+1)^2 & (c+1)^2 \\ (a-1)^2 & (b-1)^2 & (c-1)^2 \end{vmatrix} =$ (c) f is continuous but not differentiable at x = 161. (d) None of these **53.** For positive integers n_1 , n_2 the value of the expression $(1+i)^{n_1} + (1+i^3)^{n_1} + (1+i^5)^{n_2} + (1+i^7)^{n_2}$ where $i = \sqrt{-1}$ is a real number if and only if

www.tarainstitute.in

TARA/NDA-NA/Mathematics/05

4

* TARA

(5

TARA/NDA-NA/Mathematics/05

$\underline{\smile}$		<u></u>	amotria		
)	(a) $4\begin{vmatrix} a^2 & b^2 & c^2 \\ a & b & c \\ 1 & 1 & 1 \end{vmatrix}$ (c) $2\begin{vmatrix} a^2 & b^2 & c^2 \\ a & b & c \\ 1 & 1 & 1 \end{vmatrix}$	(b) 3 $\begin{vmatrix} a^2 & b^2 & c^2 \\ a & b & c \\ 1 & 1 & 1 \end{vmatrix}$ (d) None of these	69.	physics and 18 take histo	2 take needle work, 16 take ry. If all the 30 students take no one takes all three then ng 2 subjects is (b) 6 (d) 20
			70.	If $n(A) = 4$, $n(B) = 3$, $n(A > 1)$	$(B \times C) = 24$, then $n(C) =$
	11 12 13				
62.	$\begin{vmatrix} 11 & 12 & 13 \\ 12 & 13 & 14 \end{vmatrix} =$			(a) 288	(b) 1
02.				(c) 12	(d) 17
	13 14 15			(e) 2	
	(a) 1	(b) 0	71.	A relation R is defined from	om {2, 3, 4, 5} to {3, 6, 7,
	(c) –1	(d) 67		10} by $xRy \Leftrightarrow x$ is relativ	ely prime to y. Then domain
	$\begin{vmatrix} x & 4 & y+z \end{vmatrix}$			of R is	
63.	$\begin{vmatrix} x & y \\ y & 4 \\ z + x \end{vmatrix} =$			(a) {2, 3, 5}	(b) {3, 5}
	$\begin{vmatrix} x & 4 & y+z \\ y & 4 & z+x \\ z & 4 & x+y \end{vmatrix} =$				
		(1-)		(c) {2, 3, 4}	(d) {2, 3, 4, 5}
	(a) 4	(b) $x + y + z$	12.		defined by $x + 2y = 8$. The
	(c) xyz	(d) 0		domain of R is	
				(a) {2, 4, 8}	(b) {2, 4, 6, 8}
		[3] [2]		(c) {2, 4, 6}	(d) {1, 2, 3, 4}
64.	If $U = [2-3 \ 4], X = [0 \ 2 \ 3]$	$V = \begin{vmatrix} 2 \\ 2 \end{vmatrix}$ and $Y = \begin{vmatrix} 2 \\ 2 \end{vmatrix}$	73.	If $R = \{(x, y) \mid x, y \in Z, x^2 + \}$	$y^2 \le 4$ is a relation in Z,
				then domain of R is	
	then $UV + XY =$				(b) {0, -1, -2}
	(a) 20	(b) [– 20]		(c) $\{-2, -1, 0, 1, 2\}$	
	(c) – 20	(d) [20]			
			74.	If $y = x^2 + x^{\log x}$, then $\frac{dy}{dx}$	=
65.	If $A = \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}$, then the value	alue of A^{40} is		2 log x	
				(a) $\frac{x^2 + \log x \cdot x^{\log x}}{x}$	(b) $x^2 + \log x \cdot x^{\log x}$
	(a) $\begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix}$	(b) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$		X	
				(c) $\frac{2(x^2 + \log x.x^{\log x})}{x}$	(d) None of these
	(c) $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$	(d) $\begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}$		Χ.	
			75.	If $y = x^2 + \frac{1}{x^2 + \frac{1}{x^2 + \frac{1}{x^2 + \frac{1}{x^2 + \dots}}}}$, then <u>dy</u> =
66.	If (1, 3), (2, 5) and (3, 3) a	are three elements of $A \times B$		$x^{2} + \frac{1}{1}$	dx
	and the total number of e	elements in $A \times B$ is 6, then		$X^{2} + \frac{1}{Y^{2} + 1}$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	the remaining elements of	A×B are			
	(a) (1, 5); (2, 3); (3, 5)	(b) (5, 1); (3, 2); (5, 3)		(a) $\frac{2xy}{2y-x^2}$	(b) $\frac{xy}{y+x^2}$
	(c) (1, 5); (2, 3); (5, 3)			2y - x	2
67.		3, 8}, then $(A \cup B) \times (A \cap$		(c) $\frac{xy}{y-x^2}$	(d) $\frac{2xy}{2+\frac{x^2}{y}}$
	<i>B</i>) is			$y - x^2$	$2 + \frac{x^2}{2}$
	(a) {(3, 1), (3, 2), (3, 3), ((3 8)}			У
	(b) {(1, 3), (2, 3), (3, 3), (76.	If $f(x) = x + \frac{1}{x}$, $x > 0$, the	en its greatest value is
	(c) $\{(1, 2), (2, 2), (3, 3), (2, 2), (3, 3),$			(a) – 2	(b) 0
	(d) {(8, 3), (8, 2), (8, 1), ((c) 3	(d) None of these
68.		6}, then $(A - B) \times (A \cap B)$ is	77.	The perimeter of a sector	is p. The area of the sector
		(b) $\{(3, 2), (3, 5), (3, 6)\}$		is maximum when its rad	ius is
	(c) $\{(3, 2), (3, 5)\}$	(d) None of these			

* TARA

 $\left(6 \right)$

TARA/NDA-NA/Mathematics/05

(b) $\frac{1}{\sqrt{p}}$ (a) \sqrt{p} (c) $\frac{p}{2}$ (d) $\frac{p}{4}$ **78.** If $y = a \log x + bx^2 + x$ has its extremum value at x = 1and x = 2, then (a, b) =(a) $\left(1, \frac{1}{2}\right)$ (b) $\left(\frac{1}{2}, 2\right)$ (c) $\left(2, \frac{-1}{2}\right)$ (d) $\left(\frac{-2}{3}, \frac{-1}{6}\right)$ **79.** In (-4,4) the function $f(x) = \int_{-10}^{x} (t^4 - 4)e^{-4t} dt$ has (a) No extrema (b) One extremum (c) Two extrema (d) Four extrema **80.** On [1, e] the greatest value of $x^2 \log x$ (b) $\frac{1}{e}\log\frac{1}{\sqrt{e}}$ (a) e^2 (C) $e^2 \log \sqrt{e}$ (d) None of these 81. The following points A (2a, 4a), B(2a, 6a) and C $(2a + \sqrt{3}a, 5a)$, (a > 0) are the vertices of (a) An acute angled triangle (b) A right angled triangle (c) An isosceles triangle (d) None of these 82. If the coordinates of the vertices of a triangle be (1,a), (2,b) and $(c^2,3)$, then the centroid of the triangle (a) Lies at the origin (b) Cannot lie on x-axis (c) Cannot lie on y-axis (d) None of these 83. If the vertices of a triangle be (0,0), (6,0) and (6,8), then its incentre will be (a) (2,1) (b) (1,2) (c) (4,2) (d) (2,4) 84. If the middle points of the sides of a triangle be (-2, -2)(4, -3) and (4, 5), then the centroid of the 3), triangle is (a) (5/3, 2) (b) (5/6, 1) (c) (2, 5/3) (d) (1, 5/6) **85.** If the vertices P, Q, R of a triangle PQR are rational points, which of the following points of the triangle PQR is (are) always rational point(s) (a) Centroid (b) Incentre (c) Circumcentre (d) Orthocentre

(A rational point is a point both of whose coordinates are rational numbers)

The medians AD and BE of a triangle with vertices 86 A(0, b), B(0, 0) and C(a, 0) are perpendicular to each other, if (a) $a = \sqrt{2} b$ (b) $a = -\sqrt{2} b$ (c) Both (a) and (b) (d) None of these Let PS be the median of the triangle with vertices 87. P(2, 2), Q(6, -1) and R(7, 3). The equation of the line passing through (1, -1) and parallel to PS is (a) 2x - 9y - 7 = 0(b) 2x - 9y - 11 = 0(d) 2x + 9y + 7 = 0(c) 2x + 9y - 11 = 0**88.** The equation of straight line passing through (-a, 0)and making the triangle with axes of area 'T' is (a) $2Tx + a^2y + 2aT = 0$ (b) $2Tx - a^2y + 2aT = 0$ (c) $2Tx - a^2y - 2aT = 0$ (d) None of these 89. $\int \frac{x^5}{\sqrt{1+x^3}} dx =$ (a) $\frac{2}{9}(1+x^3)^{3/2}+c$ (b) $\frac{2}{9}(1+x^3)^{3/2} + \frac{2}{3}(1+x^3)^{1/2} + c$ (c) $\frac{2}{9}(1+x^3)^{3/2} - \frac{2}{3}(1+x^3)^{1/2} + c$ (d) None of these $\int \frac{dx}{\sin x - \cos x + \sqrt{2}}$ equals 90. (a) $-\frac{1}{\sqrt{2}} \tan\left(\frac{x}{2} + \frac{\pi}{8}\right) + c$ (b) $\frac{1}{\sqrt{2}} \tan\left(\frac{x}{2} + \frac{\pi}{8}\right) + c$ (c) $\frac{1}{\sqrt{2}}\cot\left(\frac{x}{2}+\frac{\pi}{8}\right)+c$ (d) $-\frac{1}{\sqrt{2}}\cot\left(\frac{x}{2}+\frac{\pi}{8}\right)+c$ integrating **91**. If factor of $x(1-x^2)dy + (2x^2y - y - ax^3)dx = 0$ is $e^{\int Pdx}$, then P is equal to (a) $\frac{2x^2 - ax^3}{x(1-x^2)}$ (b) $(2x^2 - 1)$ (c) $\frac{2x^2-1}{ax^3}$ (d) $\frac{(2x^2-1)}{x(1-x^2)}$ **92**. A solution of the differential equation $\left(\frac{dy}{dx}\right)^2 - x\frac{dy}{dx} + y = 0$ is (a) y = 2(b) y = 2x(d) $y = 2x^2 - 4$ (c) y = 2x - 4

X TARA

The slope of the tangent at (x, y) to a curve passing 100. A tetrahedron vertices 93. has at O(0, 0, 0), through $\left(1,\frac{\pi}{4}\right)$ is given by $\frac{y}{x} - \cos^2\left(\frac{y}{x}\right)$, then the A(1, 2, 1), B(2, 1, 3) and C(-1, 1, 2). Then the angle between the faces OAB and ABC will be equation of the curve is (a) $\cos^{-1}\left(\frac{19}{35}\right)$ (b) $\cos^{-1}\left(\frac{17}{31}\right)$ (a) $y = \tan^{-1} \left[\log \left(\frac{e}{x} \right) \right]$ (b) $y = x \tan^{-1} \left[\log \left(\frac{x}{e} \right) \right]$ (C) 30° (d) 90° (c) $y = x \tan^{-1} \left[\log \left(\frac{e}{x} \right) \right]$ (d) None of these 101. Three forces of magnitudes 1, 2, 3 dynes meet in a 94. The equation of family of curves for which the length point and act along diagonals of three adjacent faces of the normal is equal to the radius vector is of a cube. The resultant force is (a) $y^2 \pm x^2 = k$ (a) 114 dyne (b) 6 dyne (b) $y \pm x = k$ (d) None of these (c) 5 dyne (c) $y^2 = kx$ (d) None of these 102. The vectors **b** and **c** are in the direction of north-east **95.** A continuously differentiable function $\phi(x)$ in $(0, \pi)$ and north-west respectively and $|\mathbf{b}| = |\mathbf{c}| = 4$. The satisfying $y' = 1 + y^2$, $y(0) = 0 = y(\pi)$ is magnitude and direction of the vector $\mathbf{d} = \mathbf{c} - \mathbf{b}$, are (a) tan x (b) $x(x - \pi)$ (a) $4\sqrt{2}$, towards north (b) $4\sqrt{2}$, towards west (d) Not possible (C) $(x - \pi) (1 - e^x)$ (c) 4, towards east (d) 4, towards south 96. The solution of differential the equation 103. If a, b and c are unit vectors, then $\sqrt{a+x} \frac{dy}{dx} + xy = 0$ is |**a**-**b** $|^2 + |$ **b**-**c** $|^2 + |$ **c**-**a** $|^2$ does not exceed (a) 4 (b) 9 (a) $y = Ae^{2/3(2a-x)\sqrt{x+a}}$ (b) $y = Ae^{-2/3(a-x)\sqrt{x+a}}$ (c) 8 (d) 6 (d) $y = Ae^{-2/3(2a-x)\sqrt{x+a}}$ (c) $y = Ae^{2/3(2a+x)\sqrt{x+a}}$ **104.** The vectors $\overrightarrow{AB} = 3\mathbf{i} + 5\mathbf{j} + 4\mathbf{k}$ and $\overrightarrow{AC} = 5\mathbf{i} - 5\mathbf{j} + 2\mathbf{k}$ (Where A is an arbitrary constant.) are the sides of a triangle ABC. The length of the median through A is 97. If a, b, c are three non-coplanar vectors, then the (a) $\sqrt{13}$ unit (b) $2\sqrt{5}$ unit vector equation $\mathbf{r} = (1 - \mathbf{p} - \mathbf{q})\mathbf{a} + p\mathbf{b} + q\mathbf{c}$ represents a (c) 5 unit (d) 10 unit (a) Straight line **105.** Let the value of $\mathbf{p} = (x + 4y)\mathbf{a} + (2x + y + 1)\mathbf{b}$ and (b) Plane q = (y - 2x + 2)a + (2x - 3y - 1)b, where a and b are (c) Plane passing through the origin non-collinear vectors. If $3\mathbf{p} = 2\mathbf{q}$, then the value of x (d) Sphere and y will be 98. The vector equation of the line joining the points (a) - 1, 2 (b) 2, -1 i - 2j + k and -2j + 3k is (c) 1, 2 (d) 2, 1 (a) r = t(i + j + k)**106.** If $\int_{0}^{t^{2}} xf(x)dx = \frac{2}{5}t^{5}$, t > 0, then $f\left(\frac{4}{25}\right) = \frac{1}{5}t^{5}$ (b) $\mathbf{r} = t_1(\mathbf{i} - 2\mathbf{j} + \mathbf{k}) + t_2(3\mathbf{k} - 2\mathbf{j})$ (c) $\mathbf{r} = (\mathbf{i} - 2\mathbf{j} + \mathbf{k}) + t(2\mathbf{k} - \mathbf{i})$ (a) $\frac{2}{5}$ (b) $\frac{5}{2}$ (d) r = t(2k - i)The 99. spheres $r^2 + 2u_1 \cdot r + 2d_1 = 0$ and (c) $-\frac{2}{5}$ (d) None of these $\mathbf{r}^2 + 2\mathbf{u}_2 \cdot \mathbf{r} + 2d_2 = 0$ cut orthogonally, if **107.** For which of the following values of *m*, the area of (a) $\mathbf{u}_1 \cdot \mathbf{u}_2 = 0$ the region bounded by the curve $y = x - x^2$ and the (b) $\mathbf{u}_1 + \mathbf{u}_2 = 0$ line y = mx equals $\frac{9}{2}$ (c) $\mathbf{u}_1 \cdot \mathbf{u}_2 = d_1 + d_2$ (d) $(\mathbf{u}_1 - \mathbf{u}_2) \cdot (\mathbf{u}_1 + \mathbf{u}_2) = d_1^2 + d_2^2$ (a) -4 (b) -2 (c) 2 (d) 4

www.tarainstitute.com

TARA/NDA-NA/Mathematics/05

TARA

 $\overline{7}$

8

- **108.** Area enclosed between the curve $y^2(2a x) = x^3$ and line x = 2a above x-axis is
 - (b) $\frac{3\pi a^2}{2}$ (a) πa^2
 - (d) $3\pi a^2$ (c) $2\pi a^2$
- **109.** If *A* and *B* are two independent events, then $P\left(\frac{A}{B}\right) =$
 - (a) 0 (b) 1 (c) P(A)
 - (d) P(B)
- **110.** If E and F are independent events such that 0 < P(E) < 1 and 0 < P(F) < 1, then
 - (a) E and F^{c} (the complement of the event F) are independent
 - (b) E^c and F^c are independent
 - (c) $P\left(\frac{E}{F}\right) + P\left(\frac{E^c}{F^c}\right) = 1$
 - (d) All of the above

111. If
$$4 P(A) = 6 P(B) = 10 P(A \cap B) = 1$$
, then $P\left(\frac{B}{A}\right) = 1$

- (a) $\frac{2}{5}$ (b) (c) $\frac{7}{10}$ $\frac{19}{60}$ (d)
- 112. For a biased die, the probabilities for different faces to turn up are

Face :	1	2	3	4	5	6
Probability :	0.2	0.22	0.11	0.25	0.05	0.17

The die is tossed and you are told that either face 4 or face 5 has turned up. The probability that it is face 4 is

- (a) (d) None of these (c)
- **113.** If the mean and variance of a binomial variate X are 2 and 1 respectively, then the probability that X takes a value greater than 1, is

(a)	$\frac{2}{3}$	(b)	$\frac{4}{5}$
(c)	$\frac{7}{8}$	(d)	15 16

114. At least number of times a fair coin must be tossed so that the probability of getting at least one head is at least 0.8, is

(a) 7	(b) 6

(c) 5 (d) None of these

- **115.** A square ABCD of diagonal 2a is folded along the diagonal AC so that the planes DAC and BAC are at right angle. The shortest distance between DC and AB is
 - (a) $\sqrt{2}a$ (b) $2a/\sqrt{3}$
 - (c) $2a/\sqrt{5}$ (d) $(\sqrt{3}/2)a$
- 116. A line with direction cosines proportional to 2,1, 2 meets each of the lines x = y + a = z and x + a = 2y = 2z. The co-ordinates of each of the points of intersection are given by
 - (b) (3a, 2a, 3a), (a, a, a) (a) (2a, a, 3a), (2a, a, a)
 - (c) (3a, 2a, 3a), (a, a, 2a)(d) (3a, 3a, 3a), (a, a, a)
- **117.** The equation of the planes passing through the line of intersection of the planes 3x - y - 4z = 0 and x + 3y + 6 = 0 whose distance from the origin is 1, are
 - (a) x 2y 2z 3 = 0, 2x + y 2z + 3 = 0
 - (b) x-2y+2z-3=0, 2x+y+2z+3=0
 - (c) x + 2y 2z 3 = 0, 2x y 2z + 3 = 0
 - (d) None of these

TARA

- **118.** The co-ordinates of the points A and B are (2, 3, 4) (-2, 5,- 4) respectively. If a point P moves so that $PA^2 - PB^2 = k$ where k is a constant, then the locus of P is
 - (a) A line (b) A plane
 - (c) A sphere (d) None of these
- 119. The equation of the plane passing through the points (1,-3,-2) and perpendicular to planes x + 2y + 2z = 5and 3x + 3y + 2z = 8, is
 - (a) 2x 4y + 3z 8 = 0(b) 2x - 4y - 3z + 8 = 0
 - (c) 2x + 4y + 3z + 8 = 0(d) None of these
- **120.** The equation of the plane through the intersection of the planes x + 2y + 3z - 4 = 0, 4x + 3y + 2z + 1 = 0and passing through the origin will be
 - (a) x + y + z = 0(b) 17x + 14y + 11z = 0
 - (C) 7x + 4y + z = 0(d) 17x + 14y + z = 0